3.509 \(\int \cot ^2(c+d x) \sqrt{a+b \tan (c+d x)} \, dx\)

Optimal. Leaf size=415 \[ -\frac{b \log \left (-\sqrt{2} \sqrt{\sqrt{a^2+b^2}+a} \sqrt{a+b \tan (c+d x)}+\sqrt{a^2+b^2}+a+b \tan (c+d x)\right )}{2 \sqrt{2} d \sqrt{\sqrt{a^2+b^2}+a}}+\frac{b \log \left (\sqrt{2} \sqrt{\sqrt{a^2+b^2}+a} \sqrt{a+b \tan (c+d x)}+\sqrt{a^2+b^2}+a+b \tan (c+d x)\right )}{2 \sqrt{2} d \sqrt{\sqrt{a^2+b^2}+a}}-\frac{b \tanh ^{-1}\left (\frac{\sqrt{\sqrt{a^2+b^2}+a}-\sqrt{2} \sqrt{a+b \tan (c+d x)}}{\sqrt{a-\sqrt{a^2+b^2}}}\right )}{\sqrt{2} d \sqrt{a-\sqrt{a^2+b^2}}}+\frac{b \tanh ^{-1}\left (\frac{\sqrt{\sqrt{a^2+b^2}+a}+\sqrt{2} \sqrt{a+b \tan (c+d x)}}{\sqrt{a-\sqrt{a^2+b^2}}}\right )}{\sqrt{2} d \sqrt{a-\sqrt{a^2+b^2}}}-\frac{b \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a}}\right )}{\sqrt{a} d}-\frac{\cot (c+d x) \sqrt{a+b \tan (c+d x)}}{d} \]

[Out]

-((b*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a]])/(Sqrt[a]*d)) - (b*ArcTanh[(Sqrt[a + Sqrt[a^2 + b^2]] - Sqrt[2]
*Sqrt[a + b*Tan[c + d*x]])/Sqrt[a - Sqrt[a^2 + b^2]]])/(Sqrt[2]*Sqrt[a - Sqrt[a^2 + b^2]]*d) + (b*ArcTanh[(Sqr
t[a + Sqrt[a^2 + b^2]] + Sqrt[2]*Sqrt[a + b*Tan[c + d*x]])/Sqrt[a - Sqrt[a^2 + b^2]]])/(Sqrt[2]*Sqrt[a - Sqrt[
a^2 + b^2]]*d) - (b*Log[a + Sqrt[a^2 + b^2] + b*Tan[c + d*x] - Sqrt[2]*Sqrt[a + Sqrt[a^2 + b^2]]*Sqrt[a + b*Ta
n[c + d*x]]])/(2*Sqrt[2]*Sqrt[a + Sqrt[a^2 + b^2]]*d) + (b*Log[a + Sqrt[a^2 + b^2] + b*Tan[c + d*x] + Sqrt[2]*
Sqrt[a + Sqrt[a^2 + b^2]]*Sqrt[a + b*Tan[c + d*x]]])/(2*Sqrt[2]*Sqrt[a + Sqrt[a^2 + b^2]]*d) - (Cot[c + d*x]*S
qrt[a + b*Tan[c + d*x]])/d

________________________________________________________________________________________

Rubi [A]  time = 0.523446, antiderivative size = 415, normalized size of antiderivative = 1., number of steps used = 16, number of rules used = 12, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.522, Rules used = {3568, 3653, 3485, 700, 1129, 634, 618, 206, 628, 3634, 63, 208} \[ -\frac{b \log \left (-\sqrt{2} \sqrt{\sqrt{a^2+b^2}+a} \sqrt{a+b \tan (c+d x)}+\sqrt{a^2+b^2}+a+b \tan (c+d x)\right )}{2 \sqrt{2} d \sqrt{\sqrt{a^2+b^2}+a}}+\frac{b \log \left (\sqrt{2} \sqrt{\sqrt{a^2+b^2}+a} \sqrt{a+b \tan (c+d x)}+\sqrt{a^2+b^2}+a+b \tan (c+d x)\right )}{2 \sqrt{2} d \sqrt{\sqrt{a^2+b^2}+a}}-\frac{b \tanh ^{-1}\left (\frac{\sqrt{\sqrt{a^2+b^2}+a}-\sqrt{2} \sqrt{a+b \tan (c+d x)}}{\sqrt{a-\sqrt{a^2+b^2}}}\right )}{\sqrt{2} d \sqrt{a-\sqrt{a^2+b^2}}}+\frac{b \tanh ^{-1}\left (\frac{\sqrt{\sqrt{a^2+b^2}+a}+\sqrt{2} \sqrt{a+b \tan (c+d x)}}{\sqrt{a-\sqrt{a^2+b^2}}}\right )}{\sqrt{2} d \sqrt{a-\sqrt{a^2+b^2}}}-\frac{b \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a}}\right )}{\sqrt{a} d}-\frac{\cot (c+d x) \sqrt{a+b \tan (c+d x)}}{d} \]

Antiderivative was successfully verified.

[In]

Int[Cot[c + d*x]^2*Sqrt[a + b*Tan[c + d*x]],x]

[Out]

-((b*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a]])/(Sqrt[a]*d)) - (b*ArcTanh[(Sqrt[a + Sqrt[a^2 + b^2]] - Sqrt[2]
*Sqrt[a + b*Tan[c + d*x]])/Sqrt[a - Sqrt[a^2 + b^2]]])/(Sqrt[2]*Sqrt[a - Sqrt[a^2 + b^2]]*d) + (b*ArcTanh[(Sqr
t[a + Sqrt[a^2 + b^2]] + Sqrt[2]*Sqrt[a + b*Tan[c + d*x]])/Sqrt[a - Sqrt[a^2 + b^2]]])/(Sqrt[2]*Sqrt[a - Sqrt[
a^2 + b^2]]*d) - (b*Log[a + Sqrt[a^2 + b^2] + b*Tan[c + d*x] - Sqrt[2]*Sqrt[a + Sqrt[a^2 + b^2]]*Sqrt[a + b*Ta
n[c + d*x]]])/(2*Sqrt[2]*Sqrt[a + Sqrt[a^2 + b^2]]*d) + (b*Log[a + Sqrt[a^2 + b^2] + b*Tan[c + d*x] + Sqrt[2]*
Sqrt[a + Sqrt[a^2 + b^2]]*Sqrt[a + b*Tan[c + d*x]]])/(2*Sqrt[2]*Sqrt[a + Sqrt[a^2 + b^2]]*d) - (Cot[c + d*x]*S
qrt[a + b*Tan[c + d*x]])/d

Rule 3568

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si
mp[(b*(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^n)/(f*(m + 1)*(a^2 + b^2)), x] + Dist[1/((m + 1)*(a^2
+ b^2)), Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^(n - 1)*Simp[a*c*(m + 1) - b*d*n - (b*c - a*d)*
(m + 1)*Tan[e + f*x] - b*d*(m + n + 1)*Tan[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c -
 a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && LtQ[m, -1] && GtQ[n, 0] && IntegerQ[2*m]

Rule 3653

Int[(((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (
f_.)*(x_)]^2))/((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[1/(a^2 + b^2), Int[(c + d*Tan[e + f*
x])^n*Simp[b*B + a*(A - C) + (a*B - b*(A - C))*Tan[e + f*x], x], x], x] + Dist[(A*b^2 - a*b*B + a^2*C)/(a^2 +
b^2), Int[((c + d*Tan[e + f*x])^n*(1 + Tan[e + f*x]^2))/(a + b*Tan[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e,
f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] &&  !GtQ[n, 0] &&  !LeQ[n, -
1]

Rule 3485

Int[((a_) + (b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Dist[b/d, Subst[Int[(a + x)^n/(b^2 + x^2), x], x
, b*Tan[c + d*x]], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[a^2 + b^2, 0]

Rule 700

Int[Sqrt[(d_) + (e_.)*(x_)]/((a_) + (c_.)*(x_)^2), x_Symbol] :> Dist[2*e, Subst[Int[x^2/(c*d^2 + a*e^2 - 2*c*d
*x^2 + c*x^4), x], x, Sqrt[d + e*x]], x] /; FreeQ[{a, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0]

Rule 1129

Int[(x_)^(m_.)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[a/c, 2]}, With[{r = Rt[2*q - b/
c, 2]}, Dist[1/(2*c*r), Int[x^(m - 1)/(q - r*x + x^2), x], x] - Dist[1/(2*c*r), Int[x^(m - 1)/(q + r*x + x^2),
 x], x]]] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0] && GeQ[m, 1] && LtQ[m, 3] && NegQ[b^2 - 4*a*c]

Rule 634

Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Dist[(2*c*d - b*e)/(2*c), Int[1/(a +
 b*x + c*x^2), x], x] + Dist[e/(2*c), Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] &
& NeQ[2*c*d - b*e, 0] && NeQ[b^2 - 4*a*c, 0] &&  !NiceSqrtQ[b^2 - 4*a*c]

Rule 618

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 3634

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_.)*((A_) + (C_.)*
tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Dist[A/f, Subst[Int[(a + b*x)^m*(c + d*x)^n, x], x, Tan[e + f*x]], x]
 /; FreeQ[{a, b, c, d, e, f, A, C, m, n}, x] && EqQ[A, C]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \cot ^2(c+d x) \sqrt{a+b \tan (c+d x)} \, dx &=-\frac{\cot (c+d x) \sqrt{a+b \tan (c+d x)}}{d}-\int \frac{\cot (c+d x) \left (-\frac{b}{2}+a \tan (c+d x)+\frac{1}{2} b \tan ^2(c+d x)\right )}{\sqrt{a+b \tan (c+d x)}} \, dx\\ &=-\frac{\cot (c+d x) \sqrt{a+b \tan (c+d x)}}{d}+\frac{1}{2} b \int \frac{\cot (c+d x) \left (1+\tan ^2(c+d x)\right )}{\sqrt{a+b \tan (c+d x)}} \, dx-\int \sqrt{a+b \tan (c+d x)} \, dx\\ &=-\frac{\cot (c+d x) \sqrt{a+b \tan (c+d x)}}{d}+\frac{b \operatorname{Subst}\left (\int \frac{1}{x \sqrt{a+b x}} \, dx,x,\tan (c+d x)\right )}{2 d}-\frac{b \operatorname{Subst}\left (\int \frac{\sqrt{a+x}}{b^2+x^2} \, dx,x,b \tan (c+d x)\right )}{d}\\ &=-\frac{\cot (c+d x) \sqrt{a+b \tan (c+d x)}}{d}+\frac{\operatorname{Subst}\left (\int \frac{1}{-\frac{a}{b}+\frac{x^2}{b}} \, dx,x,\sqrt{a+b \tan (c+d x)}\right )}{d}-\frac{(2 b) \operatorname{Subst}\left (\int \frac{x^2}{a^2+b^2-2 a x^2+x^4} \, dx,x,\sqrt{a+b \tan (c+d x)}\right )}{d}\\ &=-\frac{b \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a}}\right )}{\sqrt{a} d}-\frac{\cot (c+d x) \sqrt{a+b \tan (c+d x)}}{d}-\frac{b \operatorname{Subst}\left (\int \frac{x}{\sqrt{a^2+b^2}-\sqrt{2} \sqrt{a+\sqrt{a^2+b^2}} x+x^2} \, dx,x,\sqrt{a+b \tan (c+d x)}\right )}{\sqrt{2} \sqrt{a+\sqrt{a^2+b^2}} d}+\frac{b \operatorname{Subst}\left (\int \frac{x}{\sqrt{a^2+b^2}+\sqrt{2} \sqrt{a+\sqrt{a^2+b^2}} x+x^2} \, dx,x,\sqrt{a+b \tan (c+d x)}\right )}{\sqrt{2} \sqrt{a+\sqrt{a^2+b^2}} d}\\ &=-\frac{b \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a}}\right )}{\sqrt{a} d}-\frac{\cot (c+d x) \sqrt{a+b \tan (c+d x)}}{d}-\frac{b \operatorname{Subst}\left (\int \frac{1}{\sqrt{a^2+b^2}-\sqrt{2} \sqrt{a+\sqrt{a^2+b^2}} x+x^2} \, dx,x,\sqrt{a+b \tan (c+d x)}\right )}{2 d}-\frac{b \operatorname{Subst}\left (\int \frac{1}{\sqrt{a^2+b^2}+\sqrt{2} \sqrt{a+\sqrt{a^2+b^2}} x+x^2} \, dx,x,\sqrt{a+b \tan (c+d x)}\right )}{2 d}-\frac{b \operatorname{Subst}\left (\int \frac{-\sqrt{2} \sqrt{a+\sqrt{a^2+b^2}}+2 x}{\sqrt{a^2+b^2}-\sqrt{2} \sqrt{a+\sqrt{a^2+b^2}} x+x^2} \, dx,x,\sqrt{a+b \tan (c+d x)}\right )}{2 \sqrt{2} \sqrt{a+\sqrt{a^2+b^2}} d}+\frac{b \operatorname{Subst}\left (\int \frac{\sqrt{2} \sqrt{a+\sqrt{a^2+b^2}}+2 x}{\sqrt{a^2+b^2}+\sqrt{2} \sqrt{a+\sqrt{a^2+b^2}} x+x^2} \, dx,x,\sqrt{a+b \tan (c+d x)}\right )}{2 \sqrt{2} \sqrt{a+\sqrt{a^2+b^2}} d}\\ &=-\frac{b \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a}}\right )}{\sqrt{a} d}-\frac{b \log \left (a+\sqrt{a^2+b^2}+b \tan (c+d x)-\sqrt{2} \sqrt{a+\sqrt{a^2+b^2}} \sqrt{a+b \tan (c+d x)}\right )}{2 \sqrt{2} \sqrt{a+\sqrt{a^2+b^2}} d}+\frac{b \log \left (a+\sqrt{a^2+b^2}+b \tan (c+d x)+\sqrt{2} \sqrt{a+\sqrt{a^2+b^2}} \sqrt{a+b \tan (c+d x)}\right )}{2 \sqrt{2} \sqrt{a+\sqrt{a^2+b^2}} d}-\frac{\cot (c+d x) \sqrt{a+b \tan (c+d x)}}{d}+\frac{b \operatorname{Subst}\left (\int \frac{1}{2 \left (a-\sqrt{a^2+b^2}\right )-x^2} \, dx,x,-\sqrt{2} \sqrt{a+\sqrt{a^2+b^2}}+2 \sqrt{a+b \tan (c+d x)}\right )}{d}+\frac{b \operatorname{Subst}\left (\int \frac{1}{2 \left (a-\sqrt{a^2+b^2}\right )-x^2} \, dx,x,\sqrt{2} \sqrt{a+\sqrt{a^2+b^2}}+2 \sqrt{a+b \tan (c+d x)}\right )}{d}\\ &=-\frac{b \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a}}\right )}{\sqrt{a} d}-\frac{b \tanh ^{-1}\left (\frac{\sqrt{a+\sqrt{a^2+b^2}}-\sqrt{2} \sqrt{a+b \tan (c+d x)}}{\sqrt{a-\sqrt{a^2+b^2}}}\right )}{\sqrt{2} \sqrt{a-\sqrt{a^2+b^2}} d}+\frac{b \tanh ^{-1}\left (\frac{\sqrt{a+\sqrt{a^2+b^2}}+\sqrt{2} \sqrt{a+b \tan (c+d x)}}{\sqrt{a-\sqrt{a^2+b^2}}}\right )}{\sqrt{2} \sqrt{a-\sqrt{a^2+b^2}} d}-\frac{b \log \left (a+\sqrt{a^2+b^2}+b \tan (c+d x)-\sqrt{2} \sqrt{a+\sqrt{a^2+b^2}} \sqrt{a+b \tan (c+d x)}\right )}{2 \sqrt{2} \sqrt{a+\sqrt{a^2+b^2}} d}+\frac{b \log \left (a+\sqrt{a^2+b^2}+b \tan (c+d x)+\sqrt{2} \sqrt{a+\sqrt{a^2+b^2}} \sqrt{a+b \tan (c+d x)}\right )}{2 \sqrt{2} \sqrt{a+\sqrt{a^2+b^2}} d}-\frac{\cot (c+d x) \sqrt{a+b \tan (c+d x)}}{d}\\ \end{align*}

Mathematica [C]  time = 0.771769, size = 139, normalized size = 0.33 \[ -\frac{\frac{b \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a}}\right )}{\sqrt{a}}-i \sqrt{a-i b} \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a-i b}}\right )+i \sqrt{a+i b} \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a+i b}}\right )+\cot (c+d x) \sqrt{a+b \tan (c+d x)}}{d} \]

Antiderivative was successfully verified.

[In]

Integrate[Cot[c + d*x]^2*Sqrt[a + b*Tan[c + d*x]],x]

[Out]

-(((b*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a]])/Sqrt[a] - I*Sqrt[a - I*b]*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sq
rt[a - I*b]] + I*Sqrt[a + I*b]*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a + I*b]] + Cot[c + d*x]*Sqrt[a + b*Tan[c
 + d*x]])/d)

________________________________________________________________________________________

Maple [C]  time = 0.75, size = 26752, normalized size = 64.5 \begin{align*} \text{output too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(d*x+c)^2*(a+b*tan(d*x+c))^(1/2),x)

[Out]

result too large to display

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^2*(a+b*tan(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 7.44221, size = 8155, normalized size = 19.65 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^2*(a+b*tan(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

[1/4*(4*sqrt(2)*(a*d^5*cos(d*x + c)^2 - a*d^5)*sqrt((a*d^2*sqrt((a^2 + b^2)/d^4) + a^2 + b^2)/b^2)*sqrt(b^2/d^
4)*((a^2 + b^2)/d^4)^(3/4)*arctan(-(sqrt(2)*b*d^5*sqrt((a*cos(d*x + c) + b*sin(d*x + c))/cos(d*x + c))*sqrt((a
*d^2*sqrt((a^2 + b^2)/d^4) + a^2 + b^2)/b^2)*sqrt(b^2/d^4)*((a^2 + b^2)/d^4)^(3/4) - sqrt(2)*d^5*sqrt((a*d^2*s
qrt((a^2 + b^2)/d^4) + a^2 + b^2)/b^2)*sqrt((sqrt(2)*b^3*d^3*sqrt((a*cos(d*x + c) + b*sin(d*x + c))/cos(d*x +
c))*sqrt((a*d^2*sqrt((a^2 + b^2)/d^4) + a^2 + b^2)/b^2)*((a^2 + b^2)/d^4)^(3/4)*cos(d*x + c) + (a^2*b^2 + b^4)
*d^2*sqrt((a^2 + b^2)/d^4)*cos(d*x + c) + (a^3*b^2 + a*b^4)*cos(d*x + c) + (a^2*b^3 + b^5)*sin(d*x + c))/((a^2
 + b^2)*cos(d*x + c)))*sqrt(b^2/d^4)*((a^2 + b^2)/d^4)^(3/4) + (a^2 + b^2)*d^4*sqrt(b^2/d^4)*sqrt((a^2 + b^2)/
d^4) + (a^3 + a*b^2)*d^2*sqrt(b^2/d^4))/(a^2*b^2 + b^4)) + 4*sqrt(2)*(a*d^5*cos(d*x + c)^2 - a*d^5)*sqrt((a*d^
2*sqrt((a^2 + b^2)/d^4) + a^2 + b^2)/b^2)*sqrt(b^2/d^4)*((a^2 + b^2)/d^4)^(3/4)*arctan(-(sqrt(2)*b*d^5*sqrt((a
*cos(d*x + c) + b*sin(d*x + c))/cos(d*x + c))*sqrt((a*d^2*sqrt((a^2 + b^2)/d^4) + a^2 + b^2)/b^2)*sqrt(b^2/d^4
)*((a^2 + b^2)/d^4)^(3/4) - sqrt(2)*d^5*sqrt((a*d^2*sqrt((a^2 + b^2)/d^4) + a^2 + b^2)/b^2)*sqrt(-(sqrt(2)*b^3
*d^3*sqrt((a*cos(d*x + c) + b*sin(d*x + c))/cos(d*x + c))*sqrt((a*d^2*sqrt((a^2 + b^2)/d^4) + a^2 + b^2)/b^2)*
((a^2 + b^2)/d^4)^(3/4)*cos(d*x + c) - (a^2*b^2 + b^4)*d^2*sqrt((a^2 + b^2)/d^4)*cos(d*x + c) - (a^3*b^2 + a*b
^4)*cos(d*x + c) - (a^2*b^3 + b^5)*sin(d*x + c))/((a^2 + b^2)*cos(d*x + c)))*sqrt(b^2/d^4)*((a^2 + b^2)/d^4)^(
3/4) - (a^2 + b^2)*d^4*sqrt(b^2/d^4)*sqrt((a^2 + b^2)/d^4) - (a^3 + a*b^2)*d^2*sqrt(b^2/d^4))/(a^2*b^2 + b^4))
 + 4*(a^3 + a*b^2)*sqrt((a*cos(d*x + c) + b*sin(d*x + c))/cos(d*x + c))*cos(d*x + c)*sin(d*x + c) + sqrt(2)*((
a^3 + a*b^2)*d*cos(d*x + c)^2 - (a^3 + a*b^2)*d - (a^2*d^3*cos(d*x + c)^2 - a^2*d^3)*sqrt((a^2 + b^2)/d^4))*sq
rt((a*d^2*sqrt((a^2 + b^2)/d^4) + a^2 + b^2)/b^2)*((a^2 + b^2)/d^4)^(1/4)*log((sqrt(2)*b^3*d^3*sqrt((a*cos(d*x
 + c) + b*sin(d*x + c))/cos(d*x + c))*sqrt((a*d^2*sqrt((a^2 + b^2)/d^4) + a^2 + b^2)/b^2)*((a^2 + b^2)/d^4)^(3
/4)*cos(d*x + c) + (a^2*b^2 + b^4)*d^2*sqrt((a^2 + b^2)/d^4)*cos(d*x + c) + (a^3*b^2 + a*b^4)*cos(d*x + c) + (
a^2*b^3 + b^5)*sin(d*x + c))/((a^2 + b^2)*cos(d*x + c))) - sqrt(2)*((a^3 + a*b^2)*d*cos(d*x + c)^2 - (a^3 + a*
b^2)*d - (a^2*d^3*cos(d*x + c)^2 - a^2*d^3)*sqrt((a^2 + b^2)/d^4))*sqrt((a*d^2*sqrt((a^2 + b^2)/d^4) + a^2 + b
^2)/b^2)*((a^2 + b^2)/d^4)^(1/4)*log(-(sqrt(2)*b^3*d^3*sqrt((a*cos(d*x + c) + b*sin(d*x + c))/cos(d*x + c))*sq
rt((a*d^2*sqrt((a^2 + b^2)/d^4) + a^2 + b^2)/b^2)*((a^2 + b^2)/d^4)^(3/4)*cos(d*x + c) - (a^2*b^2 + b^4)*d^2*s
qrt((a^2 + b^2)/d^4)*cos(d*x + c) - (a^3*b^2 + a*b^4)*cos(d*x + c) - (a^2*b^3 + b^5)*sin(d*x + c))/((a^2 + b^2
)*cos(d*x + c))) - (a^2*b + b^3 - (a^2*b + b^3)*cos(d*x + c)^2)*sqrt(a)*log(-(8*a*b*cos(d*x + c)*sin(d*x + c)
+ (8*a^2 - b^2)*cos(d*x + c)^2 + b^2 - 4*(2*a*cos(d*x + c)^2 + b*cos(d*x + c)*sin(d*x + c))*sqrt(a)*sqrt((a*co
s(d*x + c) + b*sin(d*x + c))/cos(d*x + c)))/(cos(d*x + c)^2 - 1)))/((a^3 + a*b^2)*d*cos(d*x + c)^2 - (a^3 + a*
b^2)*d), 1/4*(4*sqrt(2)*(a*d^5*cos(d*x + c)^2 - a*d^5)*sqrt((a*d^2*sqrt((a^2 + b^2)/d^4) + a^2 + b^2)/b^2)*sqr
t(b^2/d^4)*((a^2 + b^2)/d^4)^(3/4)*arctan(-(sqrt(2)*b*d^5*sqrt((a*cos(d*x + c) + b*sin(d*x + c))/cos(d*x + c))
*sqrt((a*d^2*sqrt((a^2 + b^2)/d^4) + a^2 + b^2)/b^2)*sqrt(b^2/d^4)*((a^2 + b^2)/d^4)^(3/4) - sqrt(2)*d^5*sqrt(
(a*d^2*sqrt((a^2 + b^2)/d^4) + a^2 + b^2)/b^2)*sqrt((sqrt(2)*b^3*d^3*sqrt((a*cos(d*x + c) + b*sin(d*x + c))/co
s(d*x + c))*sqrt((a*d^2*sqrt((a^2 + b^2)/d^4) + a^2 + b^2)/b^2)*((a^2 + b^2)/d^4)^(3/4)*cos(d*x + c) + (a^2*b^
2 + b^4)*d^2*sqrt((a^2 + b^2)/d^4)*cos(d*x + c) + (a^3*b^2 + a*b^4)*cos(d*x + c) + (a^2*b^3 + b^5)*sin(d*x + c
))/((a^2 + b^2)*cos(d*x + c)))*sqrt(b^2/d^4)*((a^2 + b^2)/d^4)^(3/4) + (a^2 + b^2)*d^4*sqrt(b^2/d^4)*sqrt((a^2
 + b^2)/d^4) + (a^3 + a*b^2)*d^2*sqrt(b^2/d^4))/(a^2*b^2 + b^4)) + 4*sqrt(2)*(a*d^5*cos(d*x + c)^2 - a*d^5)*sq
rt((a*d^2*sqrt((a^2 + b^2)/d^4) + a^2 + b^2)/b^2)*sqrt(b^2/d^4)*((a^2 + b^2)/d^4)^(3/4)*arctan(-(sqrt(2)*b*d^5
*sqrt((a*cos(d*x + c) + b*sin(d*x + c))/cos(d*x + c))*sqrt((a*d^2*sqrt((a^2 + b^2)/d^4) + a^2 + b^2)/b^2)*sqrt
(b^2/d^4)*((a^2 + b^2)/d^4)^(3/4) - sqrt(2)*d^5*sqrt((a*d^2*sqrt((a^2 + b^2)/d^4) + a^2 + b^2)/b^2)*sqrt(-(sqr
t(2)*b^3*d^3*sqrt((a*cos(d*x + c) + b*sin(d*x + c))/cos(d*x + c))*sqrt((a*d^2*sqrt((a^2 + b^2)/d^4) + a^2 + b^
2)/b^2)*((a^2 + b^2)/d^4)^(3/4)*cos(d*x + c) - (a^2*b^2 + b^4)*d^2*sqrt((a^2 + b^2)/d^4)*cos(d*x + c) - (a^3*b
^2 + a*b^4)*cos(d*x + c) - (a^2*b^3 + b^5)*sin(d*x + c))/((a^2 + b^2)*cos(d*x + c)))*sqrt(b^2/d^4)*((a^2 + b^2
)/d^4)^(3/4) - (a^2 + b^2)*d^4*sqrt(b^2/d^4)*sqrt((a^2 + b^2)/d^4) - (a^3 + a*b^2)*d^2*sqrt(b^2/d^4))/(a^2*b^2
 + b^4)) + 4*(a^3 + a*b^2)*sqrt((a*cos(d*x + c) + b*sin(d*x + c))/cos(d*x + c))*cos(d*x + c)*sin(d*x + c) + sq
rt(2)*((a^3 + a*b^2)*d*cos(d*x + c)^2 - (a^3 + a*b^2)*d - (a^2*d^3*cos(d*x + c)^2 - a^2*d^3)*sqrt((a^2 + b^2)/
d^4))*sqrt((a*d^2*sqrt((a^2 + b^2)/d^4) + a^2 + b^2)/b^2)*((a^2 + b^2)/d^4)^(1/4)*log((sqrt(2)*b^3*d^3*sqrt((a
*cos(d*x + c) + b*sin(d*x + c))/cos(d*x + c))*sqrt((a*d^2*sqrt((a^2 + b^2)/d^4) + a^2 + b^2)/b^2)*((a^2 + b^2)
/d^4)^(3/4)*cos(d*x + c) + (a^2*b^2 + b^4)*d^2*sqrt((a^2 + b^2)/d^4)*cos(d*x + c) + (a^3*b^2 + a*b^4)*cos(d*x
+ c) + (a^2*b^3 + b^5)*sin(d*x + c))/((a^2 + b^2)*cos(d*x + c))) - sqrt(2)*((a^3 + a*b^2)*d*cos(d*x + c)^2 - (
a^3 + a*b^2)*d - (a^2*d^3*cos(d*x + c)^2 - a^2*d^3)*sqrt((a^2 + b^2)/d^4))*sqrt((a*d^2*sqrt((a^2 + b^2)/d^4) +
 a^2 + b^2)/b^2)*((a^2 + b^2)/d^4)^(1/4)*log(-(sqrt(2)*b^3*d^3*sqrt((a*cos(d*x + c) + b*sin(d*x + c))/cos(d*x
+ c))*sqrt((a*d^2*sqrt((a^2 + b^2)/d^4) + a^2 + b^2)/b^2)*((a^2 + b^2)/d^4)^(3/4)*cos(d*x + c) - (a^2*b^2 + b^
4)*d^2*sqrt((a^2 + b^2)/d^4)*cos(d*x + c) - (a^3*b^2 + a*b^4)*cos(d*x + c) - (a^2*b^3 + b^5)*sin(d*x + c))/((a
^2 + b^2)*cos(d*x + c))) - 4*(a^2*b + b^3 - (a^2*b + b^3)*cos(d*x + c)^2)*sqrt(-a)*arctan(sqrt(-a)*sqrt((a*cos
(d*x + c) + b*sin(d*x + c))/cos(d*x + c))/a))/((a^3 + a*b^2)*d*cos(d*x + c)^2 - (a^3 + a*b^2)*d)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{a + b \tan{\left (c + d x \right )}} \cot ^{2}{\left (c + d x \right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)**2*(a+b*tan(d*x+c))**(1/2),x)

[Out]

Integral(sqrt(a + b*tan(c + d*x))*cot(c + d*x)**2, x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{b \tan \left (d x + c\right ) + a} \cot \left (d x + c\right )^{2}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^2*(a+b*tan(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(b*tan(d*x + c) + a)*cot(d*x + c)^2, x)